Test Report

ICON SOLAR-EN POWER TECHNOLOGIES PVT. LTD.

REPORT NUMBER: 4787707130-S1 PROJECT NUMBER: 4787707130 Location (a)
UL India Lab,
UL India Pvt Limited,
Laboratory building,
Kalyani Platina
Campus, Sy.no.129/4,
EPIP Zone, Phase II,
Whitefield,
Bangalore – 560 066
P:91-80-41384400

Location (b)
UL India Pvt Limited,
413 Sector-8, IMT
Manesar, Gurgaon.P:
91-124-22990246

......

Reviewed by signature: 12-LO-F0852, Issue 4.0

General Details

General Details	T.					
Customer / Applicant	ICON SOLAR-EN POWER TECHNOLOGIES PVT. LTD. MAGNETO MALL, 319 & 320 OFFIZO, 3RD FLOOR, G.E. ROAD, RAIPUR, CHHATTISGARH, 492001, INDIA					
Manufacturer	ICON SOLAR-EN POWER TECHNOLOGIES PVT. LTD. MAGNETO MALL, 319 & 320 OFFIZO, 3RD FLOOR, G.E. ROAD, RAIPUR, CHHATTISGARH, 492001, INDIA					
Program	Others					
Test Lab Location	(a) UL Bangalore	Refer to Cover	page for the UL address			
Item Under Test	300W Poly Crystalline I	Module				
Model Tested			odels to be covered as detailed Declaration Letter provided.			
Number of Samples	3Nos					
UL Sample Identification	693493, 693494 & Refer Summary of Test results for multiple samples					
Manufacturer Serial Number (if any)	ICON30036A02101510 ICON30036A02101510		0210151040 &			
Condition of IUT on receipt	Good					
Date of Receipt	15/11/2016					
Applicable Standard	modules as per IEC 6. Potential-Induced Dec Photovoltaic Modules	2804 – Test Meth gradation Part 1: . Edition 1.0, 201 recent MNRE req	5-08 [Negative Grounding] uirement: 3 Cycles at 85ºC ±			
Date of Testing (Start date)	01/12/2016	End Date	28/12/2016			
III ganaral ambient condition	Temperature in °C		25 +3/-5°C			
UL general^ ambient condition	Relative humidity in %	6	45-70 %			
Date of Reporting	03/01/2017					
Test Results	PASS					
Test In-charge	Srimathy N					

Mahesh V **Project Engineer**

Reviewed by

Sriparn Saurabh **Engineering Leader**

(Veripon Naunsh.

Authorized signatory

Disclaimer

The issuance of this report in no way implies Listing, Classification or Recognition by UL and does not authorize the use of UL Listing, Classification or Recognition Marks or any other reference to UL on the product or system. UL authorizes the above named company to reproduce this Report provided it is reproduced in its entirety. UL's name or marks cannot be used in any packaging, advertising, promotion or marketing relating to the data in this Report, without UL's prior written permission. The results of testing in this report apply only to the sample product/item, which was tested. UL Lab has not participated in the sample selection. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties. The applicable standard ambient condition supersedes the lab general ambient conditions and are recorded in datasheets available in the lab.

Models Covered:

MODEL NAME	WATTAG E (WP)	MAXIMU M SYSTEM VOLTAGE (Vdc)	OPEN CIRCUIT VOLTAG E @STC (Vdc)	RATED VOLTAG E @STC, (Vdc)	RATED CURRENT @ STC (A)	SHORT CIRCUIT CURRENT @ STC, (A)	RATED MAXIMU N POWER AT STC, (Watts)	MAXIMU M SERIES FUSE (A)
ISEN150	150	1000	22.23	18.11	8.31	8.74	150.5	15
ISEN165	165	1000	24.64	20.08	8.23	8.67	165.3	15
ISEN170	170	1000	24.78	20.18	8.43	8.84	170.1	15
ISEN195	195	1000	29.48	24.04	8.12	8.59	195.2	15
ISEN200	200	1000	29.64	24.14	8.31	8.74	200.6	15
ISEN205	205	1000	29.77	24.24	8.47	8.87	205.3	15
ISEN220	220	1000	33.19	27.06	8.15	8.61	220.5	15
ISEN225	225	1000	33.35	27.16	8.31	8.74	225.7	15
ISEN230	230	1000	33.46	27.25	8.45	8.84	230.3	15
ISEN250	250	1000	44.46	36.18	6.92	7.28	250.4	15
ISEN250	250	1000	37.05	30.12	8.31	8.75	250.3	15
ISEN255	255	1000	37.18	30.27	8.43	8.84	255.2	15
ISEN260	260	1000	37.28	30.58	8.51	8.93	260.2	15
ISEN265	265	1000	37.36	30.69	8.64	9.01	265.2	15
ISEN270	270	1000	40.58	33.08	8.17	8.62	270.3	15
ISEN275	275	1000	40.76	33.20	8.31	8.74	275.9	15
ISEN280	280	1000	40.89	33.29	8.43	8.84	280.6	15
ISEN300	300	1000	44.45	36.18	8.30	8.75	300.3	15
ISEN305	305	1000	44.59	36.33	8.40	8.83	305.2	15
ISEN310	310	1000	44.70	36.43	8.51	8.93	310.0	15
ISEN315	315	1000	44.85	36.52	8.63	9.02	315.2	15
ISEN320	320	1000	45.00	36.59	8.75	9.12	320.2	15
ISEN325	325	1000	45.02	36.73	8.85	9.16	325.1	15
ISEN330	330	1000	45.07	37.2	8.88	9.21	330.3	15

Applicant Declaration Letter:

Module Manufacturing Declaration

Date: 03/01/2017

Company: Icon Solar EN Power Technologies Pvt. Ltd

This is to certify that the (ISEN 300) PID tested modules from UL-India are built with identical raw materials, components and production parameters of IEC tested module ISEN310 from UL-India, is therefore following models are belongs to same module type family.

Module to be covered for PID:

ISEN 150, 1SEN 165, ISEN 170, ISEN 195, ISEN 200, ISEN 205, ISEN 220, ISEN 225, ISEN 230, ISEN 250, ISEN 255, ISEN 260, ISEN 265, ISEN 270, ISEN 275, ISEN 280, ISEN 300, ISEN 305, ISEN 310, ISEN 315, ISEN 320, ISEN 325, ISEN 330.

Debkumar Banerjee

GM-Technical

Icon Solar-en Power Technologies Pvt. Ltd.

Regd. Office:319-320, Offizo, 3rd Floor, Magneto Mall ,G.E Road ,Raipur 492001 Chhattisgarh. Tel:+91-771-4065755 E-mail: iconsolaren@gmail.com Website: www.iconsolar-en.com Factory:village Dhigari, Mandir Hasaud, Tehsil Arang-493441, Raipur, Chhattisga RH (India) TIN No. 22761704727 CIN No. U29307CT2014PTCOO1359

Reviewed by signature:

Electrical parameters of Icon Modules to be covered for PID:

MODEL NAME	WATTAG E (WP)	MAXIMU M SYSTEM VOLTAGE (Vdc)	OPEN CIRCUIT VOLTAG E @STC (Vdc)	RATED VOLTAG E @STC, (Vdc)	RATED CURRENT @ STC (A)	SHORT CIRCUIT CURRENT @ STC, (A)	RATED MAXIMU N POWER AT STC, (Watts)	MAXIMU M SERIES FUSE (A)
ISEN150	150	1000	22.23	18.11	8.31	8.74	150.5	15
ISEN165	165	1000	24.64	20.08	8.23	8.67	165.3	15
ISEN170	170	1000	24.78	20.18	8.43	8.84	170.1	15
ISEN195	195	1000	29.48	24.04	8.12	8.59	195.2	15
ISEN200	200	1000	29.64	24.14	8.31	8.74	200.6	15
ISEN205	205	1000	29.77	24.24	8.47	8.87	205.3	15
ISEN220	220	1000	33.19	27.06	8.15	8.61	220.5	15
ISEN225	225	1000	33.35	27.16	8.31	8.74	225.7	15
ISEN230	230	1000	33.46	27.25	8.45	8.84	230.3	15
ISEN250	250	1000	44.46	36.18	6.92	7.28	250.4	15
ISEN250	250	1000	37.05	30.12	8.31	8.75	250.3	15
ISEN255	255	1000	37.18	30.27	8.43	8.84	255.2	15
ISEN260	260	1000	37.28	30.58	8.51	8.93	260.2	15
ISEN265	265	1000	37.36	30.69	8.64	9.01	265.2	15
ISEN270	270	1000	40.58	33.08	8.17	8.62	270.3	15
ISEN275	275	1000	40.76	33.20	8.31	8.74	275.9	15
ISEN280	280	1000	40.89	33.29	8.43	8.84	280.6	15
ISEN300	300	1000	44.45	36.18	8.30	8.75	300.3	15
ISEN305	305	1000	44.59	36.33	8.40	8.83	305.2	15
ISEN310	310	1000	44.70	36.43	8.51	8.93	310.0	15
ISEN315	315	1000	44.85	36.52	8.63	9.02	315.2	15
ISEN320	320	1000	45.00	36.59	8.75	9.12	320.2	15
ISEN325	325	1000	45.02	36.73	8.85	9.16	325.1	15
ISEN330	330	1000	45.07	37.2	8.88	9.21	330.3	15

Icon Solar-en Power Technologies Pvt. Ltd.

Regd. Office:319-320, Offizo, 3rd Floor, Magneto Mall ,G.E Road ,Raipur 492001 Chhattisgarh. Tel:+91-771-4065755 E-mail: iconsolaren@gmail.com Website: www.iconsolar-en.com Factory:village Dhigari, Mandir Hasaud, Tehsil Arang-493441, Raipur, Chhattisga RH (India) TIN No. 22761704727 CIN No. U29307CT2014PTCOO1359

Description of Item under Test (IUT)

Poly Crystalline PV Modules for PID testing. Total 2 samples were tested. 1 sample was control sample.

Sample	Sample card	Test	Product Identification &				
dentification	Number		Serial Number				
			Icon Solar-en Power Technologies Pvt. Ltd,				
1	693493		Crystalline PV module, 300W,				
			Sr. No. ICON30036A0210151036				
		PID	Icon Solar-en Power Technologies Pvt. Ltd,				
2	693494	(Negative	Crystalline PV module, 300W,				
		Grounding)	Sr. No. ICON30036A0210151040				
	CO2.40E	3,	Icon Solar-en Power Technologies Pvt. Ltd,				
3	693495		Crystalline PV module, 300W,				
Ü	(Control)		Sr. No. ICON30036A0210151043				

PV Module BOM details: (As declared by Module manufacturer)

	Description (Make, Model & Type details)
PV Module Rating	IS-EN 300 / 300Wp (72 cells)
Front Cover	Borosil, 3.2 mm solar glass
Rear Cover	Madico, Reflekt Light
Encapsulation material	TPI make ST308 FC
Frame	Ultra Aluminium make profile section 42 x 35 x 1.5 (mm)
Dimensions(I x w x h) [mm]	1964 x 986 x 42 mm
Module area [m²]	1.936 m²
PV Cell	Suntech, 156 x 156 mm Multi Crystalline solar cell
Cell- and string connectors	Luvata, 1.3 x 0.15mm & 5 x 0.3mm
Junction box	Tyco, 4 rail- 3 bypass diode
Cable	Тусо
Connectors	Тусо
Adhesive for frame	Pentagon, PT-390W
Adhesive for JB	Sikasil, AS-60 CN

Note: This report shall not be reproduced except in full, without the written approval of the test laboratory.

Summary of Test Results:

Test No.	Test Name	Results
1	Preconditioning (Pre- PID Test)	Pass
2	Visual Inspection Test (Pre-PID Test)	Pass
3	Maximum Power Determination (Pre-PID Test)	Pass
4	Performance at low irradiance (Pre-PID Test)	Pass
5	Wet Leakage Current Test (Pre-PID Test)	Pass
6	Electroluminescence at lsc and 0.1*lsc (Pre-PID Test)	Pass
7	Ground continuity test (Pre-PID Test)	Pass
8	PID Test: 3 Cycles at 85°C ± 2°C, 85 ± 3% of RH for 96Hrs – Total 288Hrs	Test Condition: 3 Cycles at 85°C ± 2°C, 85 ± 3% of RH for 96Hrs – FIRST CYCLE
9	Maximum Power Determination (Post-PID Test)	Pass
10	Performance at low irradiance (Post-PID Test) – Final	Pass
11	Wet Leakage Current Test (Post-PID Test)	Pass
12	Electroluminescence at lsc and 0.1*lsc (Post-PID Test)	Pass
13	Visual Inspection Test (Post-PID Test)	Pass
14	PID Test: 3 Cycles at 85°C ± 2°C, 85 ± 3% of RH for 96Hrs – Total 288Hrs	Test Condition: 3 Cycles at 85°C ± 2°C, 85 ± 3% of RH for 96Hrs – SECOND CYCLE

Reviewed by signature: 12-LO-F0852, Issue 4.0

15	Maximum Power Determination (Post-PID Test)	Pass
16	Performance at low irradiance (Post-PID Test) – Final	Pass
17	Wet Leakage Current Test (Post-PID Test)	Pass
18	Electroluminescence at Isc and 0.1*Isc (Post-PID Test)	Pass
19	Visual Inspection Test (Post-PID Test)	Pass
20	PID Test: 3 Cycles at 85°C ± 2°C, 85 ± 3% of RH for 96Hrs – Total 288Hrs	Test Condition: 3 Cycles at 85°C ± 2°C, 85 ± 3% of RH for 96Hrs – THIRD CYCLE
21	Maximum Power Determination (Post-PID Test)	Pass
22	Performance at low irradiance (Post-PID Test) – Final	Pass
23	Wet Leakage Current Test (Post-PID Test)	Pass
24	Electroluminescence at Isc and 0.1*Isc (Post-PID Test)	Pass
25	Visual Inspection Test (Post-PID Test)	Pass

Equipment & Calibration details:

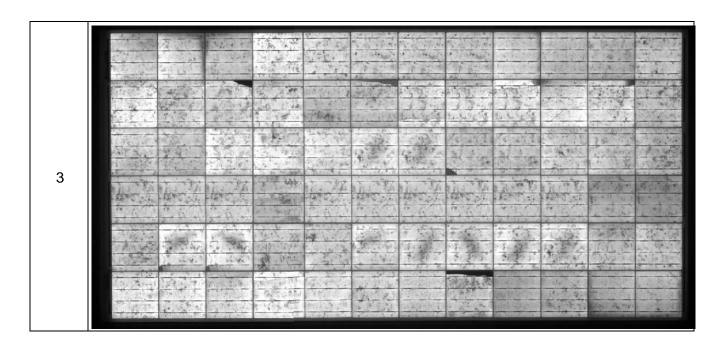
SI. No.	Test Equipment	UL Equipment ID	Calibration status (Valid up to)
1	FLASH SOLAR SIMULATOR (PV LAB)	70683	10 January 2017
2	Data logger, RH & Temperature	65675	30 May 2017
3	REFERENCE MODULE (PV LAB)	82332	Support Equipment
4	FLASH SOLAR SIMULATOR (PV LAB)	70472	17 June 2017
5	Power Supply, DC	70581	27 May 2017
6	Power Supply, DC	70691	18 August 2017
7	Power Supply, DC	70583	28 May 2017
8	Chamber, Climatic, Temp and RH	71546	06 January 2017
9	Power Supply, DC	70586	19 August 2017
10	Apparatus, Ground Bond Test	86749	16 October 2017
11	Data logger, RH & Temperature	65679	30 May 2017
12	Data logger, Temperature	68858	29 September 2017

TEST RESULTS & OBSERVATIONS

Date: 08/12/2016

Date. 00/ 1	2,2010				
Table 10.1	MST 01 – VISUAL INSPECTION– INITIAL (Pre PID Test after Preconditioning)				
San	nple No.	Position in test sequence:		_	
		Initial examination	No visual defects	Р	
	1	Preconditioning:	Exposed for 5 kwh.m2	-	
		Final examination	No visual defects	Р	
		Initial examination	No visual defects	Р	
	2	Preconditioning:	Exposed for 5 kwh.m2	-	
		Final examination	No visual defects	Р	
		Initial examination	No visual defects	Р	
	3	Preconditioning:	Exposed for 5 kwh.m2	-	
		Final examination	No visual defects	Р	

1	TABLE: MAXIMUM POWER DETERMINATION – INITIAL (PRE PID TEST AFTER PRECONDITIONING)							_	
Test Date [MM/DD/YYYY] 08/12/2016							_		
Module tem	perature [°C]	:	25					_	
Irradiance [\	V/m²)	:	1000						
Sample #	Voc [V]	Vmp [V]]	Isc [A]	Imp [A]	Pmp [W]		FF [%]	
1	45.38	36.93		8.74	8.26	304.93		77	
2	45.36	37.02		8.67	8.20	303.69		77	
3	45.30 36.73 8.76 8.24 302.52							76	
Supplement	Supplementary information: NA								


	TABLE: PERFORMANCE AT LOW IRRADIANCE- INITIAL (PRE PID TEST)						
Test Date [MM/DD/YYYY]: 08/12/2016							_
Ambient air t	emperature [°C]	·:		25			_
Irradiance [W	//m2](200 W/m2	2):		200			_
Module temperature [°C]: 25							
Test method::					☑ Data corrected to a 25°C cell temperature and 200 W/m² irradiance		
Sample #	Voc [V]	Vmp [V]	Iso	[A]	Imp [A]	Pmp [W]	FF [%]
1	42.10	35.65	1	.77	1.65	58.66	79
2	42.12	35.67	1	.76	1.64	58.46	79
3	42.02	35.16	1	.77	1.65	58.07	78
Supplementary information: NA							

10.15	TABLE: Wet leakage current test- (Pre PID Test)					
Test Date [M	/IM/DD/YYYY]:	.: 08/12/2016				
Test Voltage	e applied [V]:	1000		_		
		Required	Measured	_		
Solution res	istivity [cm):	< 3,500 -cm at 22 ± 3°C	3499	_		
Surface tens	sion [Nm ⁻²):					
Solution tem	nperature [°C]:	25	_			
Sample #	Measured [M]	Limit [M]		Result		
1	265	20.66		Р		
2 256		20.66		Р		
3	286	20.66		Р		

Supplementary information: Size of module [m²]: 1.936

Date: 08/12/2016

Table	ELECTRO	OLUMIN	NESCE	NCE IM					EST)			
Sample No.	Image At 0.1* Isc											
	W.	2000 2000 2000 2000 2000	1000		7					25 2 4 1 2 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4		1 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
1					# 1 mm				76			
										77		
		Display of the second of the s		**					4 4 -		47.70	
	Ma	11. 437 12. 714										
		1										1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2					A					*		100
۷		# - 16 N				This is						
							1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		7			7 (14)
		7	1000	Strike		7						wint to

Date: 08/12/2016

Datc. 00/12/20	10						
Table 10.4	MST 13 -	ST 13 – GROUND CONTINUITY TEST (Pre PID Test) —					
Maximum ove	Maximum over-current protection rating (A): 12						
Current applie	ed (A)	······································	30				
Location of de	signated g	rounding point:	Grounding ho	oles on frames			
Location of se	Location of second contacting point:						
Sample No.		Position in test sequence:	Voltage (V)	Resistance (Ω)			
1		Initial examination	0.53	0.018	Р		
		Final examination	0.43	0.014	Р		
2		Initial examination	0.25	0.008	Р		
		Final examination	0.34	0.011	Р		
3		Initial examination	0.83	0.028	Р		
		Final examination	0.77	Р			
Supplementar	y informat	ion: NA					

Date: 09/12/2016 - 13/12/2016

POTENTIAL INDUCED DEGRADATION TEST						
Voltage across the te	rminal & frame	1000 V				
Chamber Temperatu	re	85 ± 2 °C		_		
Chamber RH (%)		85 ± 3 %				
Hours of exposure		1st Cycle at 8 85 ± 3% of Rh				
Sample No.	Position in test sequence:	Voltage (V)	Resistance (Ω)	_		
1	Negative connected to frame Positive connected to shorted Terminals	1000	500	Р		
2	Negative connected to frame Positive connected to shorted Terminals	1000	500	Р		

	TABLE: MAXIMUM POWER DETERMINATION (POST PID TEST) – AFTER 1 ST CYCLE							_
Test Date [MM/DD/YYYY]				12/2016				_
Module temperature [°C]								_
Irradiance [W/m²)				1000				
Sample	Voc [V]	Vmp [V]	Isc [A]	Imp [A]	Pmp [W]	FF [%]
1	45.34	36.68		8.77	8.26	302.99	76	;
2	45.34	36.76		8.76	8.23	302.66	76	3
3	45.40	37.04		8.78 8.23 304.97				7
Supplem	Supplementary information: NA							

	TABLE: PERFORMANCE AT LOW IRRADIANCE- (POST PID TEST) – AFTER 1 ST CYCLE						_	
Test Date [N	Test Date [MM/DD/YYYY] 14/12/2016							
Ambient air	emperature [°C]	·····:		25			_	
Irradiance [V	V/m2](200 W/m2	2):		200			_	
Module temperature [°C] 25							_	
Test method		:		□ Data corrected to a 25°C cell temperature and 200 W/m² irradiance			_	
Sample #	Voc [V]	Vmp [V]	Iso	[A]	Imp [A]	Pmp [W]	FF [%]	
1	42.10	35.31	5.31 1.78		1.65	58.32	78	
2 42.10 35.18 1				.78	1.65	58.00	77	
Supplementa	Supplementary information: NA							

10.15	TABLE: Wet leakage current test-	(Post PID Test) – After 1st C	Cycle				
Test Date [M	M/DD/YYYY]:	14/12/2016		_			
Test Voltage	applied [V]::	1000		_			
		Required	Measured	_			
Solution resis	stivity [cm):	< 3,500 -cm at 22 ± 3°C	3499	_			
Surface tens	ion [Nm ⁻²):	< 0,03 N/m² at 22 ± 3°C		_			
Solution tem	perature [°C]:	25		_			
Sample #	Measured [M]	Limit [M]		Result			
1	435 20.66			Р			
2 425		20.66	Р				
Supplementa	Supplementary information: Size of module [m²]: 1.936						

Date: 14/12/2016

Table	ELECTROLUMINESCENCE IMAGES – (POST PID TEST) – AFTER 1ST CYCLE						
Sample No.	Image At 0.1* Isc						
1							
2							

Date: 14/12/2016

Table 10.1	MST 01 – VIS	MST 01 – VISUAL INSPECTION – (Post PID Test) – AFTER 1ST CYCLE							
Sample No.		Findings	Remarks						
1		No Visual Defects	PASS						
	2	No Visual Defects	PASS						

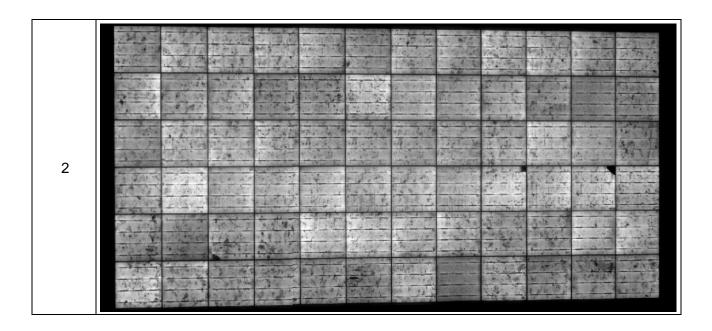
Total Degradation Observed: After 1st Cycle

Sample 1: 0.64 % Sample 2: 0.34 %

Note and other observations from Lab: NA

Date: 15/12/2016 - 19/12/2016

Date: 15/12/2016 - 19/	12/2016					
POTENTIAL INDUCED DEGRADATION TEST						
Voltage across the te	rminal & frame	1000 V		_		
Chamber Temperatur	е	85 ± 2 °C				
Chamber RH (%)		85 ± 3 %		_		
Hours of exposure		2nd Cycle at 85 ± 3% of RH	_			
Sample No.	Position in test sequence:	Voltage (V)	Resistance (Ω)			
1	Negative connected to frame Positive connected to shorted Terminals	1000	500	Р		
2	Negative connected to frame Positive connected to shorted Terminals	1000	500	Р		
Supplementary inform	nation: NA					


	TABLE: MAXIMUM POWER DETERMINATION (POST PID TEST) – AFTER 2 ND CYCLE						_	
Test Date [MM/DD/YYYY]				12/2016			_	
Module temperature [°C]								
Irradiance [W/m²)				1000				
Sample	# Voc [V]	Vmp [V]	Isc [A]	Imp [A]	Pmp [W]	FF [%]	
1	45.38	36.76		8.73	8.21	301.88	76	
2	45.38	36.81		8.74	8.20	301.75	76	
3	45.35	36.84		8.78 8.26 304.40				
Supplem	Supplementary information: NA							

10.7 B TABLE: PERFORMANCE AT LOW IRRADIANCE- (POST PID TEST) – AFTER 2 ND CYCLE								_
Test Date [MM/DD/YYYY]: 20/12/2016								_
Ambient air te	mperature [°C]	·:		25				_
Irradiance [W	/m2](200 W/m2	2):		200				_
Module tempe	Module temperature [°C]::					25		
Test method.		:		□ Data corrected to a 25°C cell temperature and 200 W/m² irradiance				_
Sample #	Voc [V]	Vmp [V]	Iso	[A]	Imp [A]	Pmp [W]	FF	[%]
1	41.94	35.23	1	.76	1.63	57.29	7	78
2 42.04 35.20 1				.76	1.62	57.15	7	77
Supplementary	information: NA							

10.15	TABLE: Wet leakage current test-	- (Post PID Test) – After 2nd	Cycle				
Test Date [M	M/DD/YYYY]:	20/12/2016		_			
Test Voltage	applied [V]::	1000		_			
		Required	Measured				
Solution resi	stivity [cm):	< 3,500 -cm at 22 ± 3°C	3499				
Surface tens	ion [Nm ⁻²):	< 0,03 N/m² at 22 ± 3°C					
Solution tem	perature [°C]:	25					
Sample #	Measured [M]	Limit [M]		Result			
1	321	20.66		Р			
2 319		20.66	Р				
Supplementa	Supplementary information: Size of module [m²]: 1.936						

Date: 20/12/2016

Table	ELECTROLUMINESCENCE IMAGES – (POST PID TEST) – AFTER 2ND CYCLE				
Sample No.	Image At 0.1* Isc				
1					

Date: 20/12/2016

Date: 20/12/2010					
Table 10.1	MST 01 – VISUAL INSPECTION – (Post PID Test) – AFTER 2ND CYCLE				
Sample No.		Findings	Remarks		
1		No Visual Defects	PASS		
2		No Visual Defects	PASS		

Total Degradation Observed: After 2nd Cycle

Sample 1: 1 % Sample 2: 0.64 %

Note and other observations from Lab: NA

Date: 23/12/2016 - 27/12/2016

POTENTIAL INDUCED DEGRADATION TEST					
Voltage across the terminal & frame 1000 V					
Chamber Temperature 85 ± 2 °C					
Chamber RH (%)		85 ± 3 %			
Hours of exposure			3rd Cycle at 85°C ± 2°C, 85 ± 3% of RH for 96Hrs		
Sample No.	Position in test sequence:	Voltage (V)	Resistance (Ω)	_	
1	Negative connected to frame Positive connected to shorted terminals	1000	500	Р	
2	Negative connected to frame Positive connected to shorted terminals	1000	500	Р	
Supplementary information: NA					

	TABLE: MAXIMUM POWER DETERMINATION (POST PID TEST) – AFTER 3RD CYCLE					_	
Test Date [MM/DD/YYYY]			28/12/2016			_	
Module to	emperature [°C].		25				
Irradiance [W/m²)			1000	_			
Sample :	# Voc [V]	Vmp [V]	Isc [A]	Imp [A]	Pmp [W]	FF [%]	
1	45.37	36.60	8.73	8.24	301.71	76	
2 45.50 36.85		36.85	8.74	8.19	301.99	76	
3	45.37	36.74	8.78	8.30	304.77	77	
Supplem	Supplementary information: NA						

	TABLE: PERFORMANCE AT LOW IRRADIANCE - (POST PID TEST) – AFTER 3RD CYCLE						_
Test Date [MM/DD/YYYY]: 28/					016		_
Ambient air te	emperature [°C]	:		25			_
Irradiance [W	/m2](200 W/m2	2):		200			_
Module temperature [°C]: 25						_	
Test method::				□ Data corrected to a 25°C cell temperature and 200 W/m² irradiance		_	
Sample # Voc [V] Vmp [V] Isc			[A]	Imp [A]	Pmp [W]	FF [%]	
1	41.97	34.93	34.93 1		1.64	57.23	77
2 41.99 35.25 1.			.76	1.62	57.07	77	
Supplementary information: NA							

10.15	0.15 TABLE: Wet leakage current test - (Post PID Test) - After 3rd Cycle				
Test Date [N	MM/DD/YYYY]:	28/12/2016			
Test Voltage	e applied [V]::	1000			
		Required	Measured		
Solution res	sistivity [cm):	< 3,500 -cm at 22 ± 3°C	3499		
Surface tens	sion [Nm ⁻²):	< 0,03 N/m² at 22 ± 3°C			
Solution ten	nperature [°C]:	25			
Sample # Measured [M]		Limit [M]		Result	
1 298		20.66		Р	
2	334	20.66		Р	
Supplementary information: Size of module [m²]: 1.936					

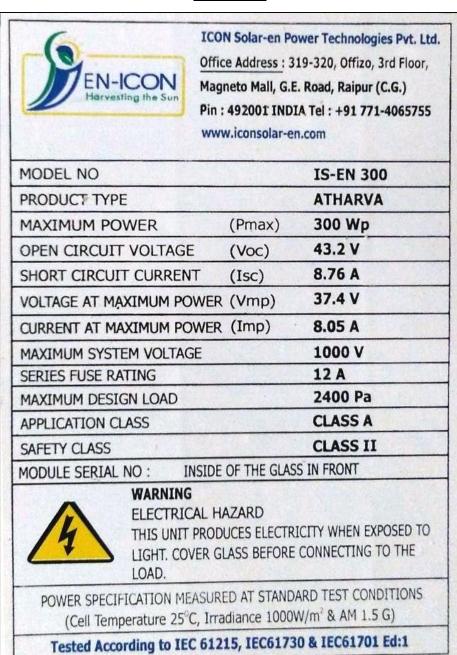
Table	ELECTROLUMINESCENCE IMAGES – (POST PID TEST) – AFTER 3RD CYCLE				
Sample No.	Image At 0.1* Isc				
1					
2					

Table 10.1	MST 01 – VISUAL INSPECTION – FINAL (Post PID Test) – AFTER 3RD CYCLE – FINAL CYCLE			
Sample No.		Findings	Remarks	
1		No Visual Defects	PASS	
2		No Visual Defects	PASS	

Total Degradation Observed: After 3rd Cycle - <u>Final Degradation</u>

Sample 1: 1.06 % Sample 2: 0.56 %

Note and other observations from Lab: NA


Test criteria - Power loss <5% at 1000W/m²

ANNEXURES

Note:

- → All PIV Curves attached as "Annexure A" along with this Report as separate attachment for reference.
- → All EL Images attached as "Annexure B" along with this Report as separate attachment for reference.

PHOTOS

***** End of the Report *****

Reviewed by signature: 12-LO-F0852, Issue 4.0

